当前位置: 锂电网 > 技术应用 > 锂电池制造中如何设置一个较为完善的化成流程

锂电池制造中如何设置一个较为完善的化成流程

放大字体 缩小字体 发布日期:2019-05-28 20:06:26   浏览次数:183
核心提示:2019年05月28日关于锂电池制造中如何设置一个较为完善的化成流程的最新消息:化成又叫活化,为电池制造后,通过一定的充放电方式将其内部正负极物质激活,改善电池综合性能的过程。化成是一个非常复杂的过程,同时也是影响电池性能很重要的一道工序,因为在电池首次充电过



化成又叫活化,为电池制造后,通过一定的充放电方式将其内部正负极物质激活,改善电池综合性能的过程。化成是一个非常复杂的过程,同时也是影响电池性能很重要的一道工序,因为在电池首次充电过程中,不可避免地要在碳负极与电解液的相界面上形成覆盖在碳电极表面的钝化薄层,称之为固体电解质界面膜或称SEI膜[1](SOLID ELECTROLYTE INTERFACE)。为了形成良好的SEI膜及高的生产效率,一般化成工艺均为采用由小到大阶梯式电流的方式,以下为国内某厂家的化成工艺:


图一 甲企业18650-2.75Ah化成工艺


图二 乙企业2714891-36Ah铝壳电池化成工艺


但是,以上化成工艺算是一个完善的工艺吗?笔者认为以上的参数设置过于简单。其实化成工艺不仅仅是为了“活化”,一个完善的设置流程可以节约生产成本、提高化成效率、减少事故发生率、提高产品一致性等。企业在确定化成工艺时,除了设置合理的充电电流外,也应该重视化成工步中的细节设置。


一、要有合理的充电时间限制

企业设置化成电流,往往更注重电流值的大小(本文暂不讨论电流大小与SEI膜的好坏),从而忽略时间的限制。潜意识认为某一步限制跳转的条件是终止电流或上限电压,从而把充电时间设置很长。如图一甲企业第二步,恒流恒压充电时间350min,而笔者使用相近容量、相同倍率模拟充电后(忽略不同材料对充电时间的影响),发现实际第二步充电时间在270min左右。问题就在这里,假如某个电池有异常造成恒流或者恒压时间很长,在实际生产过程中使用非单点控制的柜子就会出现其他电池都结束了而在“等”着这个异常电池结束的情况,这样既费电,又造成生产效率下降。


图三 某18650型号正常电池与内短路电池化成曲线


图三为笔者在实际生产中遇到的一个内短路的电池与同批次正常电池的化成曲线对比,如图中红色曲线为内短路电池,随着时间的上升此电池电压与正常电池越拉越大,同时充电到4.2V,此电池较正常电池的充电时间长了1h左右,而这无形中拖延着整个化成柜的时间。且随着充电时间的增加,短路点可能越来越大,电池温度越来越高,随着温度的不断升高,电池内部可能因正极、负极和电解液之间发生各种反应而失控[2]。那能不能提前把这些有问题的电池通过柜子识别出来呢?


二、要有合理的上下限电压限制

在每一步充放电步骤中,合理的设置上下限电压,不仅可以提高生产效率,而且可以筛选图三中的异常电池。笔者从看过的数家化成工艺中发现,企业往往只设置了上限电压,忽略了下限电压的设置,并且每一步的上限电压均设置为充电最高电压,问题往往就出在这里。


先说上限电压,回到图一和图二中,这两家企业均设置了每一步的上限电压。拿图二36Ah的铝壳电池来说,三步充电的上限电压均设置为3950mv,而该充电工步的前两步充电结束,电压均不可能达到3950mv的上限电压。也许有人会说该步骤均为时间限制跳转,所以电压设置高点也无所谓。对于正常电池确实是这样。但是非正常电池呢?举个例子,假如有电池注液量偏少,极片未被完全浸润,那么此电池充电过程中会因为极化更大而提前达到上限电压。而此时设置的上限电压越大,充电时间会越长,可能电池析锂会越严重,电池发热量也越多,无形中增加了安全风险。所以设置合理的上限电压同样有必要。


相对于上限电压的设置,每一步的下限电压设置其实更为重要。举个例子,还是上图三中内短路的电池,假如使用图二中阶梯电流充电(图一中工步也可以分成多步),在第二步中设置合适的下限电压(如表一),由于此电池第一步充电结束电压小于正常电池,那么在跳转第二步时假如低于你设置的下限电压,那么此电池就会停止充电,从而降低了安全事故发生的概率。


表一 NCM18650-2.5Ah上下限电压设置参数示例

工步号

 
关键词: 电池

[ 锂电网搜索 ]  [ 打印本文 ]  [ 违规举报

猜你喜欢

 
推荐图文
推荐锂电网
点击排行